A Soccer Ball and C60 Molecule

Carbon, a small atom with atomic weight of 12 amu and atomic number of 6, is the element on which the life on this planet is based. Carbon atom forms 4 single electron bonds of sp3 configuration and hence can combine with 4 different atoms including carbon atoms. Thus it can form giant or macromolecules often found in nature. Some examples are carbohydrates, hydrocarbons, proteins, lipids and so on.

Buckminster Fuller

Carbon as such exists in two allotropic forms namely diamond and graphite with very different physical properties. While diamond is the hardest material and inert towards chemicals, graphite is active, chemically not inert and conducts electricity with ease and has a structure made of hexagonal sheets separated by electron clouds. There sheets can slip over each other making graphite a lubricant. Scientists has been able to separate these 1 atom thick sheets which have extraordinary properties like many times stronger than steel, easily foldable and superconductor of electricity. These sheets has been named Graphene.

Possibilities do not end here. In the interstellar dust, giant molecules of carbon which are very stable and inert have been detected. One of them is C60 molecule. If it was to be superstable and chemically inert, it should have a closed structure. Smalley and Kroto who were awarded Nobel Prize for the discovery looked towards the domes constructed by Buckminster Fuller outlined above. They called this molecule Buckminsterfullerene in his honor. A soccer ball is known as truncated icosahedron which has 60 vertices, 32 faces: 12 of which are pentagonal and 20 hexagonal. Famous architect Buckminster Fuller constructed biosphere structures which are very stable and energy efficient because a sphere has maximum volume but minimum surface area.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s